MCQ Test
Welcome to our online MCQ test platform. Use the scientific calculator for assistance during the test.
Step 1: Understanding escape velocity
The escape velocity \( v_{\text{esc}} \) is given by the formula:
\[ v_{\text{esc}} = \sqrt{\frac{2GM}{R}} \]
Where \( G \) is the gravitational constant, \( M \) is the mass of the planet, and \( R \) is its radius.
Step 2: Scaling of mass and radius
Step 3: Relationship of escape velocity with mass and radius
For the Earth, escape velocity is \( v_{\text{esc,earth}} = 11 \, \text{km/s} \).
Escape velocity scales as:
\[ v_{\text{esc,planet}} \propto \sqrt{\frac{M}{R}} \]
For the new planet:
\[ v_{\text{esc,planet}} = v_{\text{esc,earth}} \sqrt{\frac{M_{\text{planet}} / M_{\text{earth}}}{R_{\text{planet}} / R_{\text{earth}}}} \]
Substitute \( M_{\text{planet}} = 10M_{\text{earth}} \) and \( R_{\text{planet}} = \frac{R_{\text{earth}}}{10} \):
\[ v_{\text{esc,planet}} = 11 \, \text{km/s} \times \sqrt{\frac{10}{\frac{1}{10}}} \]
Step 4: Simplifying the expression
Simplify the fraction under the square root:
\[ \frac{10}{\frac{1}{10}} = 10 \times 10 = 100 \]
Thus:
\[ v_{\text{esc,planet}} = 11 \, \text{km/s} \times \sqrt{100} \]
\[ v_{\text{esc,planet}} = 11 \, \text{km/s} \times 10 = 110 \, \text{km/s}. \]
Welcome to our online MCQ test platform. Use the scientific calculator for assistance during the test.
Here you will find all of the most recent trending information.
0 Comments