Trigonometric Identity Problem Solution
Question: Find the value of \(1 + \cos 56^\circ + \cos 58^\circ - \cos 66^\circ\)
Options:
Step-by-Step Solution
Key Formula: \(\cos A + \cos B = 2 \cos\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right)\)
Step 1: Group the terms:
\[ (1 + \cos 56^\circ) + (\cos 58^\circ - \cos 66^\circ) \]Step 2: Apply sum-to-product identities:
\[ 1 + \cos 56^\circ = 2 \cos^2 28^\circ \quad \text{(Using } 1 + \cos θ = 2 \cos^2(\frac{θ}{2})\text{)} \] \[ \cos 58^\circ - \cos 66^\circ = 2 \sin\left(\frac{66^\circ + 58^\circ}{2}\right) \sin\left(\frac{66^\circ - 58^\circ}{2}\right) \] \[ = 2 \sin 62^\circ \sin 4^\circ = 2 \cos 28^\circ \sin 4^\circ \]Step 3: Combine results:
\[ 2 \cos^2 28^\circ + 2 \cos 28^\circ \sin 4^\circ = 2 \cos 28^\circ (\cos 28^\circ + \sin 4^\circ) \]Step 4: Convert \(\cos 28^\circ + \sin 4^\circ\) to product form:
\[ \cos 28^\circ + \cos 86^\circ = 2 \cos 57^\circ \cos 29^\circ = 2 \sin 33^\circ \cos 29^\circ \]Final Result:
\[ 2 \cos 28^\circ \times 2 \sin 33^\circ \cos 29^\circ = 4 \cos 28^\circ \cos 29^\circ \sin 33^\circ \]✓ Correct Answer: Option B
0 Comments