Trigonometry Problem: Find \( \alpha + \beta \)
Hello, student! Let’s solve this problem together. You’re given:
\( \tan \alpha = \frac{m}{m + 1} \) and \( \tan \beta = \frac{1}{2m + 1} \)
Your task is to find the value of \( \alpha + \beta \). Here are the options:
Detailed Solution
Let’s find \( \alpha + \beta \) step-by-step using the information provided. Since we have \( \tan \alpha \) and \( \tan \beta \), and we need the sum of the angles, we’ll use a special trigonometric formula. Don’t worry—I’ll explain everything clearly!
Step 1: Understand the FormulaTo find \( \alpha + \beta \), we can use the tangent addition formula, which tells us what \( \tan(\alpha + \beta) \) is:
\[ \tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta} \]
If we can calculate \( \tan(\alpha + \beta) \), we can figure out the angle \( \alpha + \beta \) by matching it to the tangent values we know (like \( \tan \frac{\pi}{4} = 1 \), \( \tan \frac{\pi}{3} = \sqrt{3} \), etc.).
Step 2: Substitute the Given ValuesWe’re given:
\( \tan \alpha = \frac{m}{m + 1} \)
\( \tan \beta = \frac{1}{2m + 1} \)
Let’s plug these into the formula:
\[ \tan(\alpha + \beta) = \frac{\frac{m}{m + 1} + \frac{1}{2m + 1}}{1 - \left( \frac{m}{m + 1} \right) \left( \frac{1}{2m + 1} \right)} \]
Step 3: Simplify the NumeratorFirst, let’s add the two fractions in the numerator: \( \frac{m}{m + 1} + \frac{1}{2m + 1} \).
The denominators are different, so we need a common denominator. The common denominator is \( (m + 1)(2m + 1) \). Rewrite each term:
\[ \frac{m}{m + 1} = \frac{m (2m + 1)}{(m + 1)(2m + 1)} \]
\[ \frac{1}{2m + 1} = \frac{1 (m + 1)}{(m + 1)(2m + 1)} \]
Now add them:
\[ \frac{m (2m + 1)}{(m + 1)(2m + 1)} + \frac{m + 1}{(m + 1)(2m + 1)} = \frac{m (2m + 1) + (m + 1)}{(m + 1)(2m + 1)} \]
Expand the numerator:
\[ m (2m + 1) + (m+1) = (2m^2 + m)+ (m+1) \]
\[ 2m^2 + m + m + 1 = 2m^2 + 2m + 1 \]
So, the numerator is:
\[ \frac{2m^2 + 2m + 1}{(m + 1)(2m + 1)} \]
Step 4: Simplify the DenominatorNow, tackle the denominator: \( 1 - \left( \frac{m}{m + 1} \right) \left( \frac{1}{2m + 1} \right) \).
First, multiply the fractions:
\[ \frac{m}{m + 1} \cdot \frac{1}{2m + 1} = \frac{m}{(m + 1)(2m + 1)} \]
So the denominator becomes:
\[ 1 - \frac{m}{(m + 1)(2m + 1)} \]
\[ \frac{(m + 1)(2m + 1)}{(m + 1)(2m + 1)} - \frac{m}{(m + 1)(2m + 1)} = \frac{(m + 1)(2m + 1) - m}{(m + 1)(2m + 1)} \]
Expand \( (m + 1)(2m + 1) \):
\[ (m + 1)(2m + 1) = m \cdot 2m + m \cdot 1 + 1 \cdot 2m + 1 \cdot 1 = 2m^2 + m + 2m + 1 = 2m^2 + 3m + 1 \]
Then:
\[ 2m^2 + 3m + 1 - m = 2m^2 + 2m + 1 \]
So, the denominator is:
\[ \frac{2m^2 + 2m + 1}{(m + 1)(2m + 1)} \]
Step 5: Put It TogetherNow we have:
\[ \tan(\alpha + \beta) = \frac{\frac{2m^2 + 2m + 1}{(m + 1)(2m + 1)}}{\frac{2m^2 + 2m + 1}{(m + 1)(2m + 1)}} \]
Notice something amazing—the numerator and denominator are the same! When we divide a number by itself (as long as it’s not zero), we get 1:
\[ \tan(\alpha + \beta) = 1 \]
(Note: \( 2m^2 + 2m + 1 \) is always positive for real \( m \), and the denominator is defined except at \( m = -1 \) or \( m = -\frac{1}{2} \), which we assume are excluded.)
Step 6: Find the AngleIf \( \tan(\alpha + \beta) = 1 \), what is \( \alpha + \beta \)? We know:
\[ \tan \frac{\pi}{4} = 1 \]
Final AnswerSo, \( \alpha + \beta = \frac{\pi}{4} \), which is option b).
0 Comments