Line Distance Problem [IIT 1965]
Question: If the slope of a line passing through the point \( A(3,\,2) \) is \( \frac{3}{4} \), then the points on the line which are 5 units away from \( A \) are:
Detailed Step-by-Step Explanation
Step 1: Write the equation of the line passing through \( A(3,2) \) with slope \( \frac{3}{4} \). Using the point-slope form:
\( y - 2 = \frac{3}{4}(x - 3) \)
Simplify the equation:
\( y = \frac{3}{4}x - \frac{9}{4} + 2 = \frac{3}{4}x - \frac{9}{4} + \frac{8}{4} = \frac{3}{4}x - \frac{1}{4} \)
Step 2: Let \( P(x, y) \) be a point on the line. Then \( y = \frac{3}{4}x - \frac{1}{4} \). The distance between \( A(3,2) \) and \( P(x,y) \) is given by:
\( \sqrt{(x-3)^2 + \left(y-2\right)^2} = 5 \)
Substitute \( y \) from the line equation:
\( \sqrt{(x-3)^2 + \left(\frac{3}{4}x - \frac{1}{4} - 2\right)^2} = 5 \)
Simplify \( \frac{3}{4}x - \frac{1}{4} - 2 = \frac{3}{4}x - \frac{1}{4} - \frac{8}{4} = \frac{3}{4}x - \frac{9}{4} \).
So, the equation becomes:
\( \sqrt{(x-3)^2 + \left(\frac{3}{4}x - \frac{9}{4}\right)^2} = 5 \)
Step 3: Square both sides to eliminate the square root:
\( (x-3)^2 + \left(\frac{3}{4}x - \frac{9}{4}\right)^2 = 25 \)
Notice that \( \frac{3}{4}x - \frac{9}{4} = \frac{3}{4}(x-3) \). Thus:
\( (x-3)^2 + \left(\frac{3}{4}(x-3)\right)^2 = 25 \)
Step 4: Simplify the equation:
\( (x-3)^2 + \frac{9}{16}(x-3)^2 = \left(1 + \frac{9}{16}\right)(x-3)^2 = \frac{25}{16}(x-3)^2 = 25 \)
Solve for \( (x-3)^2 \):
\( (x-3)^2 = 25 \times \frac{16}{25} = 16 \)
Taking the square root:
\( x - 3 = \pm 4 \)
Therefore, the possible \( x \)-coordinates are:
\( x = 3 + 4 = 7 \) or \( x = 3 - 4 = -1 \)
Step 5: Find the corresponding \( y \)-coordinates:
For \( x = 7 \):
\( y = \frac{3}{4}(7) - \frac{1}{4} = \frac{21}{4} - \frac{1}{4} = \frac{20}{4} = 5 \)
For \( x = -1 \):
\( y = \frac{3}{4}(-1) - \frac{1}{4} = -\frac{3}{4} - \frac{1}{4} = -\frac{4}{4} = -1 \)
Thus, the points on the line that are 5 units away from \( A(3,2) \) are:
\( (7,\,5) \) and \( (-1,\,-1) \)
This corresponds to option (b).
0 Comments