Particle Force Problem – Detailed Solution

Particle Force Problem – Detailed Solution and Interactive Quiz

Particle Force Problem

Question: At any instant the velocity of a particle of mass 1 kg is given by \[ \vec{v}(t) = (2t^2 \,\hat{i} + 3t \,\hat{j}) \quad \text{m/s}. \] If the force acting on the particle at \(t = 2\,\text{s}\) is \[ \vec{F}(2) = (x \,\hat{i} + 3 \,\hat{j}) \quad \text{N}, \] then find the value of \(x\).

  • (1) 3
  • (2) 4
  • (3) 6
  • (4) 8

Select the Correct Option

(1) 3
(2) 4
(3) 6
(4) 8

Detailed Step‑by‑Step Explanation

Step 1: Find the Acceleration
The velocity of the particle is given by: \[ \vec{v}(t) = (2t^2 \,\hat{i} + 3t \,\hat{j}) \quad \text{m/s}. \] The acceleration is the time derivative of velocity: \[ \vec{a}(t) = \frac{d\vec{v}}{dt} = \frac{d}{dt}(2t^2) \,\hat{i} + \frac{d}{dt}(3t) \,\hat{j}. \] Calculating the derivatives: \[ \frac{d}{dt}(2t^2) = 4t, \quad \frac{d}{dt}(3t) = 3. \] So, \[ \vec{a}(t) = (4t\,\hat{i} + 3\,\hat{j}) \quad \text{m/s}^2. \]

Step 2: Evaluate the Acceleration at \(t = 2\,\text{s}\)
Substitute \(t = 2\,\text{s}\) into the acceleration: \[ \vec{a}(2) = (4 \times 2\,\hat{i} + 3\,\hat{j}) = (8\,\hat{i} + 3\,\hat{j}) \quad \text{m/s}^2. \]

Step 3: Apply Newton's Second Law
Newton's second law states: \[ \vec{F} = m \vec{a}. \] Given the mass \(m = 1\,\text{kg}\), the force at \(t = 2\,\text{s}\) is: \[ \vec{F}(2) = 1 \times (8\,\hat{i} + 3\,\hat{j}) = (8\,\hat{i} + 3\,\hat{j}) \quad \text{N}. \]

Step 4: Compare with the Given Force
The problem states that at \(t = 2\,\text{s}\), the force is: \[ \vec{F}(2) = (x\,\hat{i} + 3\,\hat{j}) \quad \text{N}. \] Therefore, equating the components: \[ x = 8. \]

Final Answer: \(x = 8\), which corresponds to option (4).

Post a Comment

0 Comments